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Abstract 

The present theoretical study investigates the effects of magnetic field and fluid inertia on the 

squeeze film between two parallel plates of which the top plate is axially oscillating. The lubricant 

considered in the present study is a conducting visco-elastic second order liquid, representing 

polymeric additives. The soul aim is to study the efficiency of the non-Newtonian fluid lubricant in 

the presence of magnetic field in enhancing the load bearing capacity and building up positive 

pressure distribution. Flow phenomena are characterized by non-dimensional parameters such as 

Reynolds number ( eR ), elastic parameter *
2(S ) , cross-viscosity parameter *

3(S )  and magnetic 

Parameter i.e. Hartmann number (M). 

It is remarked that the visco-elastic lubricants in the presence of magnetic field enhance the 

efficiency of  axially oscillating parallel circular plate type bearing but the fluid possessing higher 

cross viscosity under the dominance of inertia force ( eR 1 ) is unsuitable for the purpose.  

Keywords: Circular plates, visco-elastic fluid, fluid inertia, pressure, magnetic field. 

Glossary 

Ferrofluid: A ferrofluid is a stable colloidal suspension of sub-domain magnetic particles in a liquid 

carrier. The particles, which have an average size of about 100A0 (10nm), are coated with stabilizing 

dispersing agent (surfactant) which prevents particle agglomeration even a when a strong magnetic 

field gradient is applied to the ferrofluid. 

Bearing: A bearing is a system of machine element whose function is to support an applied load by 

reducing friction between the relatively moving surfaces. 

Squeeze film bearing: It is one type of fluid-film bearing which can support a load because of 

oscillatory relative normal motion.   
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1. Introduction 

The effects of fluid inertia between axially oscillating parallel circular plates were studied both 

experimentally and theoretically by Kuhn and Yates [1]. Tichy and Winer [2] studied the inertial 

consideration in parallel circular squeeze film bearings using regular perturbation technique. 

Elkough [3] accounted for all the inertia terms in the equation of motion for a laminar non-

Newtonian squeeze film. Ramanaiah [4] analyzed the problem of squeeze film considering the 

inertia effects with power law fluid as lubricant. Naduvinamani et al. [5] theoretically analyzed the 

problem of magneto-hydrodynamic couple stressed squeeze film lubrication between rough circular 

stepped plates and they found that azimuthal roughness pattern increased the mean load carrying 

capacity and squeeze film time. Naduvinamani et al. [6] have undertaken a detailed study of  

magnetic effects on rectangular plates serving as bearing surfaces and reported that bearing 

characteristics such as pressure distribution, load capacity and squeezing time enhance for increasing 

the Hartmann number.  Patel et al. [7] considered magnetic fluid based squeeze film between porous 

rotating rough circular plates. 

Karadere [8] obtained a pressure distribution in a thrust bearing by using Reynolds equation in case 

of stable lubricant viscosity and isothermal conditions. Singh and Gupta [9] presented a theoretical 

investigation concerning the effect of ferrofluid lubrication on the dynamic characteristic of curved 

slider bearing based on Shliomis model for magnetic fluid flow and observed that the effect  of 

rotation of magnetic particles improved the stiffness and damping capacities of the bearing. 

Kudenatti et al. [10] have presented numerical solution of the MHD Reynolds equation for squeeze 

film lubrication between porous and rough rectangular plates. They have applied finite difference 

based multigrid method for the solution of modified Reynolds equation to investigate the combined 

effects of surface roughness, magnetic field, couple stress fluid and permeability. 

The effects of electric and magnetic fields on the flow of electrically conducting lubricants have 

been studied extensively and the studies reveal that MHD bearings have several theoretical 

advantages over conventional bearings. The most common type MHD bearing is the slider bearing 

and the two general configurations of the slider are of interest. One configuration uses a transverse 

magnetic field with a tangential electric field, while the other, uses a tangential magnetic field with a 

tangential electric field. Das [11] discussed the optimum load bearing capacity for slider bearings 

lubricated with coupled stress fluids in magnetic field. Wei et al. [12] studied the ferrofluid 

lubrication with an external magnetic field. Zahn and Rosenweigh[13] described the motion of 

magnetic fluids through porous media under the influence of obliquely applied magnetic field and 
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established that the magnetization induced a positive effect on the performance of the bearing 

system. The load carrying capacity was found to be increased. 

Bhat and Deheri [14] investigated the squeeze film behaviour between porous annular disks using a 

magnetic fluid lubricant with the external magnetic field oblique to the lower disk and concluded 

that the application of magnetic fluid as a lubricant enhanced the performance of the squeeze film 

bearing system. Shan and Bhat [15] considered the squeeze film based on magnetic fluid in the 

curved porous circular plates taking a magnetic fluid lubricant in the presence of an external 

magnetic field oblique to the lower plate. Hamza [16] studied the motion of an electrically 

conducting fluid film squeezed between two parallel disks in the presence of a magnetic field 

applied perpendicular to the disks. Here a regular perturbation scheme was used for the analytic 

solutions and it was shown that the electromagnetic forces increase the load carrying capacity. 

Bujurke and Kudenatti [17] studied the effect of surface roughness on the squeeze film behaviour 

between two rectangular plates with an electrically conducting fluid in the presence of transverse 

magnetic field and observed that the roughness and magnetic field provided a significant load 

carrying capacity and ensured a delayed squeezing time compared to classical case. Hsu et al. [18] 

studied the squeeze film characteristics between rotating circular disc with an electrically conducting 

lubricant in the presence of a transverse magnetic field and established that the squeeze film 

characteristics of a rotating circular disc were improved. Lin et al. [19] studied the effect of 

convective fluid inertia forces on magnetic fluid in conical squeeze film in the presence of external 

magnetic field considering Shliomis model. In this case the squeeze film performance improved with 

larger value of the inertial parameter of fluid inertia forces, volume concentration of ferrite particles 

and the strength of the applied magnetic field. Wannatong et al. [20] have presented a review on 

simulation of piston secondary motion and pressure distribution in lubrication film. Further, Asbik et 

al. [21] worked on coupled boundary layer for laminar film condensation of downward 

flowingsteam-air mixture onto a single horizontal tube. Dash and Kamila [22] have studied the effect 

of fluid inertia on the film pressure between two axially oscillating parallel circular plates with a 

second order fluid as lubricant but they have restricted their discussion to non-conducting lubricant 

without the presence of magnetic field. 
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Figure1. The geometry of bearing 

However, most of the above referred studies are related to Newtonian lubricants. But in the present 

study we have considered the non-Newtonian second order fluid as lubricant. 

Moreover, we have applied an external trabsverse magnetic field which interacts with electrically 

conducting property of the lubricant producing a pondermotive force of electromagnetic origin. 

Further, the fluid model considered here represents a real fluid experimentally found by Oldroyd et 

al. [23]. The mixture of polymethyl Methacrylate in pyridine at 25oC containing 30.5 gm of polymer 

per litre and having density 0.98 gm/ml fits well in the above model.  

2. Basic equations 

The equation of continuity for an incompressible fluid is given by 

i,iV 0  (1) 

 

The equation of motion is  

i
j i ij

, j i ,i , j

v
v v X P P J B

t

 
          

 (2) 

Where vi is the velocity vector, Xi is the external body force acting on the fluid element per unit 

mass in the ith direction, P is the mean pressure, Pij is the stress in the fluid, J  is the current density 

and B  is the magnetic induction vector. 

The constitutive equation for second order fluid of Coleman and Noll [24] can be derived as 

ij I 2
1 1 2 2 3 1P P A A A      (3) 

Where 1 2,   and 3  are material constants. It is customary to call 1  the coefficient of ordinary 

viscosity, 2  the coefficient of visco-elasticity, 3  the coefficient of cross-viscosity.  It is 

important to point out that such a fluid exhibits normal stress effects in shear flows and equation (3) 

is valid for low shear rates,  2  being negative from thermodynamic considerations, A1 and A2 are 

defined by  

1 (1)ij i, j j, iA A v v   , 

2 (2)ij j, i i, j m,i m,jA A a a 2v v ,     

Where vi is the velocity vector and ai , the acceleration vector given by i
i m i,m

v
a v v

t


 


. 

3. Analysis of the Problem 
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We consider a second order incompressible fluid between two parallel circular plates initially 

separated by a small distance h0. There is a sinusoidal axial oscillation of the top plate with 

amplitude  . Cylindrical polar co-ordinates are used to describe the flow phenomena. The velocity 

components in the radial r and in the axial z directions are denoted as u and w respectively. The 

geometry of the problem is shown in Fig.1 and the velocity field defined as  

u u(r,z, t), w w(z, t)    (4)  

The surviving stress components from equation (3) in cylindrical polar co-ordinates are 

2 2
rr

1 2

u u u u u
P 2 2 u w

r r r z r r t

         
          

           

2 2

3

u u
4

r z

     
     

      

  (5) 

2 2

1 2 32 2

u u u u 1 u u
P 2 2 u w 4

r r r z r tr r


     

          
      

 (6) 

 

2 2 2
zz

1 2

w w u w w
P 2 2 w

z z z z z z t

           
            

             

 

2 2

3

u w
4

z z

     
     

      

 

 (7) 

2
zr

1 2

u u u w u u u
P u w w 2

z z r z r z r z z t

              
            

                

 

3

u u w
2

z r z

    
   

      

 (8) 

The equations of momentum and continuity take the forms 

rr rz rru u u P P P P P
u w

t r z r r z r

       
        

      
  (9) 

zz rz rzw w P P P P
w

t z z z r r

     
       

     
 (10) 

and 
u w u

0
r z r

 
  

   
(11) 

The momentum and continuity equations under the trasverse magnetic field, with relatively thin 

film, neglecting the variation of axial velocity in the radial direction and the pressure gradient along 

Z-axis are given by 

22 3 3
2

1 2 3 2

u u u 1 P u u 2 u u
u w w

t r z r r zz z z t

         
         

            
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2 22
3 0

2

B u1 u 2u u

r z r z

    
    
     

 (12) 

2 2 3 2 3 3
22

1 2 2 3 2 3 2

w w w w w w w w w
w 11 w r

t z zz z z z z z t

         
       

           

 

22 2 3 2
3 0

2 3 2

B wr w w w w
7

2 zz z z

     
   
        (13)

 

and 
r w

u
2 z


 

  
 (14) 

where 1
1


 


, the kinematic coefficient of viscosity. 

It is assumed that the magnetic Reynold’s number is so small that the induced magnetic field can be 

neglected in comparison with the applied one. It is also assumed that no applied and polarization 

voltage exists. This then corresponds to the case when no energy is added or extracted from the fluid 

by the electric field. 

4. Solution of the equations 

An iteration technique has been used to solve equation (12). Following Kahlert [25], equation (12) 

can be written as 

 
2

2
1 1

u 1 P 1
G r,z, t

rz

 
 
  

 (15) 

where    
23 3

2
3 2

u u u u 2 u u
G r,z, t u w w

t r z r zz z t

       
       
         

 

2 22
3 0

2

B u1 u 2u u

r z r z

    
    
       

 (16) 

The boundary conditions are: 

u 0, w 0 at z 0

u 0, w V at z h

   


   
  (17) 

where V is the velocity of the top. 

The first iterate solution u1 and w1 are obtained by putting G(r, z, t) = 0 in (15) and using the 

boundary conditions (17), we get 

 2
1 3

3Vr
u z hz

h
    (18) 
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and   3 2
1 3

V
w 2z 3hz

h
    (19) 

With these values of velocities, equation (16) becomes 

2
2

3 2 3

2V z z
G(r, z, t) 3r

t h h h

 
   

   

 

 
23 4 2

2 23 02
5 6 6 4 5 4 3

3 3rV B62z z 4z 1 4z
3rV z hz

h h h h h h h

    
                 

 (20) 

Substituting equation (20) into equation (15) and using the boundary conditions (17), the second 

iterate solution u2 of the radial velocity is obtained as  

 
4 3 2

2 2
2 3 2 2 3

1 1

1 P 3r V z z z z z
u z hz

2 r t 1212h 6h h h

   
                

2 5 6 4 3 2 2
32

5 6 6 5 4 3 3 4
1

363rV z z z z 2 z z z z z

15h 310h 30h 3h h 2h 6h 2h 2h

    
                      

 
2 4 3
0

3 2
1

rV B z 2z
z

4 h h

 
   

   

        (21) 

If V0 is the maximum velocity of the top plate then from equations (14) and (21), we get 

 22

1

w 1 P
z hz

z r r

 
  

  

 

2 5 6 4 3 2 2
0 32

5 6 6 5 4 3 3 4
1

6V 36z z z z 2 z z z z z

15h 310h 30h 3h h 2h 6h 2h 2h

    
                      

 

2 4 3
0 0

3 2
1

V B z 2z
z

2 h h

 
   

     

(22) 

Integration of equation (22) with boundary conditions  

w = 0 at z  = 0 and 0w V   at z = h = h0 gives an expression for the radial pressure gradient at any r 

at the time of maximum velocity of the top plate. 

2 2
1 0 1 0 0 3 0 02
3 3

0 0 00 1 0

6r V 36r V 3h rV BP 3

r 140 10 h 4 h 5 hh h

    
      

    
 (23) 

Integrating equation (23) by using the boundary condition p = 0 at r = R , where R is the radius of 

the upper plate, the pressure at the maximum velocity of the top plate is 

   
2

* 2 2 2 21 0 0 0 2 0 3 0 0 0
3

1 1 0 1 0 00

3 V h V V V V B9 3 3 3
P R r 1 R r

70 5 h 2 h 10 hh

    
       

   
  (24) 

The non-dimensional form of pressure is  
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2
* *

e e 2 32

r 9 3 3
P 3R 1 1 R S S

70 5 2R

    
             

2
2

e 2

3 r
R M 1

10 R

 
   

 

 (25) 

Where 0 0
e

1

h V
R 


, Reynolds number  

* 2
2 2

0

S
h





, Elastic parameter 

* 3
3 2

0

S
h





, Cross-viscosity parameter 

 

2 2
2 0 0

1

h B
M





, Magnetic field  

and  

4 *
0

2 2
1

h P
P

R





, non-dimensional pressure. 

5. Results and discussion 

The objective of the following discussion is to bring out the effects of fluid inertia on the film 

pressure between two axially oscillating parallel circular plates with a second order fluid as lubricant 

under the influence of magnetic field. The effects of Reynolds number e(R ) , elastic parameter
 
(

*
2S ), 

Cross-viscosity parameter
 
(

*
3S ) and magnetic parameter (M) on the fluid pressure are discussed. 
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Fig.2.1 presents the graphical representation of pressure variation versus Reynolds number for 

different values of *

2S  and *

3S . Reynolds number measures the ratio of inertia force and viscous 

force. In this figure, variation of pressure is studied under the dominance of viscous force 

since eR 1 . An increase in Re representing the case of greater inertia effect for variation of pressure 

in the bearing. It is evident that the positive pressure increases all most linearly as Reynolds number 

increases under the moderate magnetic field intensity but a negative pressure is built up as Re 

increases which is a noteworthy observation in case of moderately high value of magnetic parameter. 

Thus, it is concluded that for building up positive pressure gradient which is desirable for enhancing 

load bearing capacity, magnetic field with moderately low intensity is to be applied to the non-

Newtonian lubricant under study. 

On careful observation it is seen that the most favourable condition for developing higher positive 

pressure is achieved in the absence of magnetic field (M =0) and cross-viscosity ( *

3S 0 ) with non 

zero elasticity (Curve II, *

2S 0 ). Thus, it is concluded that elasticity property of the non-Newtonian 
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lubricant is favourable for building up higher pressure and hence load bearing capacity. It is further 

pointed out that the observation relating to the case of without magnetic field, coincides with Dash 

and Kamila [22]. It is remarked that the pressure variation at the center increases with an increase in 

the values of Reynolds number ( eR <1) i.e. under the dominance of viscous force. This remark also 

coincides with the observation of SinhaRoy and Biswal [26]. 

 

Fig. 2.2 exhibits the variation of pressure at the centre of the bearing. It is to note that Newtonian 

lubricant (Curve I, *

2S 0 ,
*

3S 0 ), generates maximum pressure at the centre in the absence of 

magnetic field. But presence of cross-viscosity decreases the pressure distribution. The elastic 
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property in conjunction with cross-viscosity increases the pressure at the centre. Further, it is 

observed that moderately high value of M generates negative pressure. 

The presence of magnetic field decreases the pressure with an increase in the values of Reynolds 

number ( eR ). It is quite interesting to note that for higher values of eR , the pressure becomes 

negative even this holds for moderate values of magnetic number. But in case of slightly higher 

values of M i.e. for (M =5), the pressure remains negative for all values of eR . 

Table-1 presents the pressure variation for various values of *
2S , *

3S , eR and M. One of the striking 

feature of the table-1 is that, it presents the case when eR >1 i.e. the case of inertia force dominates 

over the viscous force which was not shown in the figures. It is evident that Reynolds number 

( eR >1) is not favourable for building up higher pressure at the centre. It is also evident that 

elasticity of the lubricant ( *
2S =0.25,

 
*
3S =0.5, eR =1, M= 0 and M = 2) builds up positive pressure 

which is desirable in designing the bearing system but cross viscosity associated with inertia 

dominance and higher magnetic intensity imbibes negative pressure which is not desirable.   

Table-1: Pressure variation for different values of *
2S  and *

3S  

*
2S  *

3S   Re  
M  

0  2  5  

0  0  1.0  3.38572  2.18571  -4.11429  

0.5  0  1.0  4.28572  3.08572  -3.21429  

0.5  0.25  1.0  3.16072  1.96072  -4.33929  

0.5  0.5  1.0  2.03571  0.83571  -5.46429  

0.5  0.75  1.0  0.91071  -0.28929  -6,58929  

0  0.5  2.0  1.13571  -0.06429  -6.36429  

0.25  0.5  1.0  1.58571  0.38571  -5.91429  

0.75  0.5  1.0  2.48572  1.28571  -5.01429  

6. Conclusion 

It is concluded that for moderately high values of magnetic field, the pressure reduces significantly 

and even becomes negative. 

Therefore, the magnetic field with high intensity with moderate Reynolds number is not favourable 

for generating film pressure. Since higher pressure generation is a desirable quantity, it can be said 

that bearing with axially oscillating parallel circular plate type should not operate with a second 

order fluid as lubricant under the influence of moderately high magnetic field intensity. 

Further it is observed that an increase in elastic parameter (
*
2S ) leads to an increase in the pressure 

between the film which is desirable i.e., the presence of the elastic element favours the load bearing 
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capacity where as an increase in cross-viscosity parameter (
*
3S ) the pressure decreases. Thus, fluid 

possessing higher cross-viscosity is not suitable for the present bearing set up. Further, dominance of 

viscous force ( eR <1) favours in generating higher pressure. 

Therefore, the visco-elastic lubricants enhance the efficiency of the bearing with axially oscillating 

parallel circular plate type. This should be a vital point for selection of the lubricant. 
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